Endothelin-1 decreases endothelial PPARγ signaling and impairs angiogenesis after chronic intrauterine pulmonary hypertension.

نویسندگان

  • David Wolf
  • Nancy Tseng
  • Gregory Seedorf
  • Gates Roe
  • Steven H Abman
  • Jason Gien
چکیده

Increased endothelin-1 (ET-1) disrupts angiogenesis in persistent pulmonary hypertension of the newborn (PPHN), but pathogenic mechanisms are unclear. Peroxisome proliferator activated receptor γ (PPARγ) is decreased in adult pulmonary hypertension, but whether ET-1-PPARγ interactions impair endothelial cell function and angiogenesis in PPHN remains unknown. We hypothesized that increased PPHN pulmonary artery endothelial cell (PAEC) ET-1 production decreases PPARγ signaling and impairs tube formation in vitro. Proximal PAECs were harvested from fetal sheep after partial ligation of the ductus arteriosus in utero (PPHN) and controls. PPARγ and phospho-PPARγ protein were compared between normal and PPHN PAECs ± ET-1 and bosentan (ETA/ETB receptor blocker). Tube formation was assessed in response to PPARγ agonists ± ET-1, N-nitro-l-arginine (LNA) (NOS inhibitor), and PPARγ siRNA. Endothelial NO synthase (eNOS), phospho-eNOS, and NO production were measured after exposure to PPARγ agonists and PPARγ siRNA. At baseline, PPHN PAECs demonstrate decreased tube formation and PPARγ protein expression and activity. PPARγ agonists restored PPHN tube formation to normal. ET-1 decreased normal and PPHN PAEC tube formation, which was rescued by PPARγ agonists. ET-1 decreased PPARγ protein and activity, which was prevented by bosentan. PPARγ agonists increased eNOS protein and activity and NO production in normal and PPHN PAECs. LNA inhibited the effect of PPARγ agonists on tube formation. PPARγ siRNA decreased eNOS protein and tube formation in normal PAECs. We conclude that ET-1 decreases PPARγ signaling and contributes to PAEC dysfunction and impaired angiogenesis in PPHN. We speculate that therapies aimed at decreasing ET-1 production will restore PPARγ signaling, preserve endothelial function, and improve angiogenesis in PPHN.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The PPARγ ligand rosiglitazone attenuates hypoxia-induced endothelin signaling in vitro and in vivo.

Peroxisome proliferator-activated receptor (PPAR) γ activation attenuates hypoxia-induced pulmonary hypertension (PH) in mice. The current study examined the hypothesis that PPARγ attenuates hypoxia-induced endothelin-1 (ET-1) signaling to mediate these therapeutic effects. To test this hypothesis, human pulmonary artery endothelial cells (HPAECs) were exposed to normoxia or hypoxia (1% O(2)) f...

متن کامل

Chronic intrauterine pulmonary hypertension increases endothelial cell Rho kinase activity and impairs angiogenesis in vitro.

Persistent pulmonary hypertension of the newborn (PPHN) is characterized by endothelial dysfunction and decreased vascular growth. The role of Rho kinase activity in modulating endothelial function and regulating angiogenesis during normal lung development and in PPHN is unknown. We hypothesized that PPHN increases Rho kinase activity in fetal pulmonary artery endothelial cells (PAECs) and impa...

متن کامل

Phenotypical Changes of the Pulmonary Artery Endothelial Cells in Fetal Sheep Model of Persistent Pulmonary Hypertension of the Newborn

Persistent pulmonary hypertension of the newborn is a disorder with failure to decrease pulmonary vascular resistance after birth. Persistent pulmonary hypertension of the newborn happens in one out of 500 live births with a mortality rate 10-50%. Right after birth the pulmonary vascular resistance decreases drastically within a few minutes when oxygen enters into the fluid-filled alveoli. Fail...

متن کامل

Intrauterine hypertension decreases lung VEGF expression and VEGF inhibition causes pulmonary hypertension in the ovine fetus.

Although vascular endothelial growth factor (VEGF) plays a vital role in lung vascular growth in the embryo, its role in maintaining endothelial function and modulating vascular structure during late fetal life has not been studied. We hypothesized that impaired lung VEGF signaling causes pulmonary hypertension, endothelial dysfunction, and structural remodeling before birth. To determine wheth...

متن کامل

FINAL ACCEPTED VERSION LCMP-00135-2002.R1 Intrauterine Hypertension Decreases Lung VEGF Expression and VEGF Inhibition Causes Pulmonary Hypertension in the Ovine Fetus

Although vascular endothelial growth factor (VEGF) plays a vital role in lung vascular growth in the embryo, its role in maintaining endothelial function and modulating vascular structure during late fetal life has not been studied. We hypothesized that impaired lung VEGF signaling causes pulmonary hypertension, endothelial dysfunction, and structural remodeling prior to birth. To determine whe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Lung cellular and molecular physiology

دوره 306 4  شماره 

صفحات  -

تاریخ انتشار 2014